15 Aug, 2024
· Mathematics · Health

How to convert 155 pounds in kg

Short Answer
Some answer Some answer Some answer
Long Explanation

Explanation

Conversion of Pounds to Kilograms

When you want to convert 155 pounds to kilograms, you need to know the conversion factor. The standard conversion factor from pounds to kilograms is:

1 pound=0.453592 kilograms1 \text{ pound} = 0.453592 \text{ kilograms}

To find out how many kilograms are in 155 pounds, you can use the following formula:

kg=pounds×0.453592\text{kg} = \text{pounds} \times 0.453592

Putting the values into the equation, we get:

kg=155×0.453592\text{kg} = 155 \times 0.453592

To execute this multiplication:

155×0.453592=70.30676 kg155 \times 0.453592 = 70.30676 \text{ kg}

Therefore, 155 pounds is approximately 70.31 kilograms when rounded to two decimal places.

To summarize:

155 pounds70.31 kilograms\boxed{155 \text{ pounds} \approx 70.31 \text{ kilograms}}

This conversion is crucial for various applications including fitness, medicine, and any field where precise weight measurements are necessary.

Verified By
RG
Rebecca Green

Biology and Health Content Writer at Math AI

Rebecca Green, who recently completed her Master's in Biology from the University of Cape Town, works as a university lab teaching assistant and a part-time contract writer. She enjoys making biology fun and accessible through engaging content.

biology
health
Concept

Conversion Factor

Understanding the Conversion Factor

A conversion factor is a numerical value used to convert a quantity expressed in one set of units to another set of units. It is essential in various scientific and engineering calculations to ensure that results are consistent and accurate.

Basic Concept

To convert from one unit to another, you multiply the original measurement by the conversion factor corresponding to the units involved. Conversion factors are derived from the relationships between different units.

Example

For example, if you need to convert inches to centimeters, the conversion factor is:

1 inch=2.54 centimeters1 \text{ inch} = 2.54 \text{ centimeters}

General Formula

To apply a conversion factor, you can use the following formula:

New Units=Original Units×Conversion Factor\text{New Units} = \text{Original Units} \times \text{Conversion Factor}

Detailed Example

Suppose you have 10 inches, and you want to convert it to centimeters:

Measurement in cm=10 inches×2.54cminch\text{Measurement in cm} = 10 \text{ inches} \times 2.54 \frac{\text{cm}}{\text{inch}}

Performing the calculation:

10×2.54=25.4 cm10 \times 2.54 = 25.4 \text{ cm}

Multiplicative Identity

Note that the conversion factor can also be understood as a fraction that equals 1 because the quantity in the numerator and the denominator are equivalent:

2.54cminch=12.54 \frac{\text{cm}}{\text{inch}} = 1

Importance in Science and Engineering

Using the correct conversion factor is crucial in fields like physics, chemistry, and engineering where precision is key. Conversion factors enable scientists and engineers to communicate measurements accurately and standardize results across different units and systems.

By understanding and applying them correctly, you can ensure that all your measurements and calculations are consistent and reliable.

Concept

Multiplication

Understanding Multiplication

Multiplication is a fundamental operation in mathematics that involves combining groups of equal sizes. It is essentially repeated addition. For instance, multiplying 33 by 44 is the same as adding 33 four times:

3×4=3+3+3+3=123 \times 4 = 3 + 3 + 3 + 3 = 12

Multiplication Notation

Commonly, multiplication is denoted using the ×\times symbol or by placing numbers and variables together, like abab. Here's a basic multiplication equation:

a×b=ca \times b = c

Properties of Multiplication

Multiplication has several important properties that simplify calculations and provide a deeper understanding of the operation:

  1. Commutative Property: The order of factors does not affect the product.

    a×b=b×aa \times b = b \times a

    For example, 4×5=5×4=204 \times 5 = 5 \times 4 = 20.

  2. Associative Property: The way in which factors are grouped does not change the product.

    (a×b)×c=a×(b×c)(a \times b) \times c = a \times (b \times c)

    For instance, (2×3)×4=2×(3×4)=24(2 \times 3) \times 4 = 2 \times (3 \times 4) = 24.

  3. Distributive Property: Multiplication over addition can be distributed.

    a×(b+c)=(a×b)+(a×c)a \times (b + c) = (a \times b) + (a \times c)

    Example: 3×(4+5)=(3×4)+(3×5)=12+15=273 \times (4 + 5) = (3 \times 4) + (3 \times 5) = 12 + 15 = 27.

Visual Representation

To visualize multiplication, consider a grid or array. Multiplying 33 by 44 can be represented as a grid of 33 rows and 44 columns, giving a total of 1212 elements:

    ❏❏❏❏
    ❏❏❏❏
    ❏❏❏❏

Importance in Mathematics

Multiplication is crucial for various areas such as:

  • Arithmetic: Basic calculations involving large numbers.
  • Algebra: Solving equations and expressions.
  • Geometry: Calculating areas and volumes.
  • Statistics and Probability: Determining combinations and permutations.

Understanding multiplication lays the groundwork for more complex mathematical concepts and real-world applications.